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The eigenvalues and eigenvectors of the connectivity matrix of complex networks contain information about
its topology and its collective behavior. In particular, the spectral densityrsld of this matrix reveals important
network characteristics: random networks follow Wigner’s semicircular law whereas scale-free networks ex-
hibit a triangular distribution. In this paper we show that the spectral density of hierarchical networks follows
a very different pattern, which can be used as a fingerprint of modularity. Of particular importance is the value
rs0d, related to the homeostatic response of the network: it is maximum for random and scale-free networks but
very small for hierarchical modular networks. It is also large for an actual biological protein-protein interaction
network, demonstrating that the current leading model for such networks is not adequate.
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The network concept has been gaining recognition as a
fundamental tool in both biological and social sciences,
where the theory of complex systems finds fertile ground.
Biological examples include food webs in ecology[1], ner-
vous systems[2], cellular metabolism[3], protein conforma-
tion [4], and a protein-protein interaction network[5]. Social
networks include scientific collaboration, citation, problem
solving, and linguistic networks[6]. Most biological and so-
cial networks studied are not randomly connected; they fol-
low a scale-freebehavior(see[7] and references therein). In
random networks the probability that a node hask connec-
tions, Pskd, is Poisson distributed and, therefore, every node
has about the same number of connections. In scale-free net-
works Pskd follows a power law, a property that can be con-
structed by sequentialpreferential attachmentof nodes,
where new nodes are more likely to connect to already
highly connected ones. The properties of such networks are
often characterized by the presence of a few highly con-
nected nodes, thehubs, whereas most of the remaining nodes
have a small number of connections. The importance of such
networks, originally couched in terms of robustness of static
connectivity to failure despite sensitivity to attack[8], may
perhaps be better characterized in terms of their response
dynamics, that provides both robustnessand sensitivity [9].

Although scale-free networks describe several statistical
properties of biological networks, they fail to take into ac-
count one important aspect: namely, the modularity exhibited
by most complex systems[10–12]. The concept of modular-
ity assumes that the full network of interactions can be par-
titioned into a number of subnetworks or modules. Each
module is composed of several elements which are more
interconnected than they are connected to the rest of the net-
work. Modular systems may be organized in a structural
hierarchy, with multiple levels of modular decomposition.
Molecules, organelles, cells, tissues, organs and organisms,
families, communities, etc., are an example of such a hierar-
chy of structures. Networks incorporating both modular hi-
erarchy and scale-free character were recently discussed by
Ravaszet al. [13] (see also[14]). One property often used to

characterize modular networks is their clustering
coefficient—the degree to which neighbors of a node are
connected to each other—which is larger than that of generic
scale-free models.

In this work we investigate the spectral properties of
modular networks. We show that the density of states of the
connectivity matrix (particularly its randomized version
where elements are set to ±1) provides a connection between
the structure and the dynamic response of a network. This
enables us to distinguish between various models and actual
systems in a manner that may be directly relevant to consid-
ering the behavior of system response to perturbations. In
particular, we are able to distinguish clearly between ran-
dom, scale-free, and modular networks. However, none of
these standard model networks capture the properties of an
actual protein-protein interaction network.

The connectivity(or adjacency) matrix A represents the
topology of the system, indicating which variables are inter-
connected. It is defined asAij =1 if nodesi and j are con-
nected and zero otherwise. If we consider the network as an
influence network, where each link may have a strength and
phase that is not specified, a model of the interactions be-
tween nodesAR can be constructed fromA by changing each
of the entries 1 ofA into −1 with 50% probability(keeping
Aij =Aji , since they represent the same connection). The spec-
tral properties ofAR contain information about the dynamics
of the network. If the network is in equilibrium and a pertur-
bation is introduced, this perturbation propagates through the
nodes according toAR. In a linear approximation the state of
the nodes are updated according toxi

t+1=o jARijxj
t. Below we

study the spectral properties ofA andAR and show that they
are in many cases similar or otherwise can be related.

The smoothed density of states of the network is defined
by

r̄esl̄d =
1

N
o

i

desl̄ − lid, s1d

whereli are the eigenvalues of the connectivity matrix and
N is the total number of nodes. SinceA andAR are symmet-
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ric, all eigenvalues are real.desxd is a smoothed delta func-
tion that tends to the real Dirac delta ase→0. Choosinge to
be a few units of the mean level spacing produces a smooth
level density even for small networks, which is easier to
visualize than the spiked density produced by the delta func-
tions. Following Farkaset al. [15] we define scaled variables
r andl by

l = l̄/ÎNps1 − pd, r = r̄ÎNps1 − pd, s2d

where p= k̄/N is the average number of links per node di-
vided by the total number of nodes. For random networks the
density of states can be computed analytically from random
matrix theory and the result is the so-called Wigner’s semi-
circular law. In the scaled variables it becomes simplyrsld
=Î4−l2/2p if ulu,2 and zero otherwise.

Figure 1 shows the density of states for four different
networks. All networks haveN=1024 nodes, except for the
protein-protein network which hasN=1297. Figure 1(a)
showsrsld for a random network withp=0.0057, following
closely Wigner’s semicircular law. Figure 1(b) shows a scale-
free network withp=0.0058, exhibiting a triangular profile
[15,16]. Figure 1(c), showing the results for the hierarchical
network of Ravaszet al. [13], has a peculiar density, which
we shall discuss in more detail. Finally Fig. 1(d) showsrsld
for a protein-protein interaction network[5] and also has a
distinct behavior, looking more like a superposition of two
independent scale-free networks.

Figure 2 shows the density of states for the same networks
obtained with the randomized connectivity matricesAR. For
each network we diagonalized 20 matrices with random dis-

tributions of ±1’s and calculated the average density over
this ensemble. The averaged density satisfiesrsld=rs−ld.
The scale-free and random networks are not sensitive to sign
randomization, since their original spectra are already sym-
metric. The hierarchical network density of states of Ravasz
et al., on the other hand, changes considerably. It keeps the
minimum atl=0, whereas all other networks have a peak
there. Also, the density has sharp peaks with high intensity at
certain values ofulu, becoming very small away from the
peaks. Interestingly, this type of spectrum has also been ob-
served in the context of percolation theory forrandomthree-
dimensional networks near the percolation threshold[17].
The biological network also has an interesting structure, de-
viating from the pure scale-free case. However, in contrast to
the network of Ravaszet al., it has a peak atl=0.

The hierarchical network of Ravaszet al. is built from a
fully connected network with four nodes. This unit is then
replicated 3 times and the four identical networks are con-
nected together. The network thus formed is then viewed as
the new unit, and the replicating and connecting process is
repeated[13]. Although the exact repetition of this process is
artificial, one expects real modular networks to exhibit some
type of self-similar structure. In what follows we shall show
that networks built from such basic units have indeed a very
characteristic spectrum, that can be used to identify its
modular nature.

Consider first a fully connected network withN nodes.
The connectivity matrix issANdi j =1−di j . The eigenvalues of
AN can be calculated immediately and we findl1=N−1,
l2=l3=¯ =lN=−1. The first eigenvectoruw1l, correspond-
ing to the largest eigenvaluel1, has componentsw1,i =1. All
the other eigenvectors are degenerate and satisfyoiwj ,i =0. It
is possible to choose them so as to have very few nonzero
elements. The linear update equationxt+1=ANxt decouples

FIG. 1. Smoothed density of states
for a random, scale-free, hierarchical
network of Ravaszet al. (all with 1024
nodes) and the protein-protein interac-
tion network(with 1297 nodes).
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into yi
t+1=liyi

t andyi
t=li

tyi
0. The dominant mode is the “cen-

ter of mass”y1, meaning that the network synchronizes and
responds as a unit to the perturbation. All other modes in-
volve fewer nodes and correspond to oscillations of fixed
amplitude. The density of states for a fully connected net-
work has only two peaks: one atl=−1 and the other atl
=N−1, the former beingN−1 times larger than the latter.

Next we considerstar networks, which are characterized
by a single hub—i.e., a single central node to which all other
nodes are connected. Star networks emerge in systems in
which preferential attachment is superlinear, meaning that
the probability that a new node attaches to old nodes in-
creases faster than expected by linear preferential attachment
[18]. Starlike clusters are very common in biological net-
works (see, for instance,[19]) and their eigenvalues and
eigenvectors can also be computed exactly. In the idealized
star network the nodes connect only to the central node,
which we label 1. The connectivity matrix is given byAi1
=A1i =1 for i =2,3,… ,N andAij =0 otherwise. The eigenval-
ues arel1=ÎN−1, l2=l3=¯ =lN−1=0 and lN=−ÎN−1.
Starlike structures are known sources of zero eigenvalues
[16]. The first eigenvectoruw1l has componentsw11=ÎN−1
and w1i =1 for i ù2. The last eigenvectoruwNl is given by
wN1=ÎN−1 andwNi=−1 for i ù2. All the other degenerate
eigenvectors satisfywj ,1=0 andoi=2

N wj ,i =0.
Now we consider a network whose connectivity matrix

has a modular organization consisting of four main blocks,
each one very similar to the others. The number 4 is chosen
only for comparison with the model of Ravaszet al., but
could be any number. We assume that the blocks are fully
connected, so that we know their eigenvectors and eigenval-
ues when they are decoupled. Letuwi

al be theith eigenvector
of the block labeled bya. Since the blocks are all identical,
the eigenvalues are degenerate:l1

a=M −1 andli
a=−1 for i

Þ1, whereM is the dimension of the blocks. The connec-
tivity matrix can represented in block form by

A =1
AM v12 v13 v14

v12
T AM v23 v24

v13
T v23

T AM v34

v14
T v24

T v34
T AM

2 ; A0 + V, s3d

where AM are fully connectedM 3M matrices,A0 is the
unperturbedmatrix, with the four uncoupledAM blocks, and
V is a sparse perturbation, representing the weak connection
between nodes of different blocks.

The perturbation breaks the degeneracy between the
blocks. The first eigenvalue becomesl=l0+m and the cor-
responding eigenvectoruv1

al=obaabuw1
bl+ ujl where the sum

over b runs over the blocks and represents the linear combi-
nation between the originally degenerate vectors and the last
term is the correction due to the perturbation. Writing the
eigenvalue equation foruv1

al and keeping only linear terms in
the perturbationV leads to the condition

o
b

aabfkw1
auVuw1

bl − mdabg = 0. s4d

For all the other eigenvectors, whose degeneracy is much
bigger, we writeuvn

al=obmaab
nmuwm

bl+ ujl where the sum now
runs overb andm, with n, mÞ1. The eigenvalue equation
for this case is

FIG. 2. Smoothed density of states
for the randomizednetworks of Fig. 1.
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o
bm

aab
nmfkwn

auVuwm
bl − mdabdnmg = 0. s5d

However, each matrix elementkwn
auVuwm

bl is obtained by add-
ing elements of the matrixV with coefficients that add up to
zero. SinceV is sparse, we expect most of these elements to
be zero and, when they are not zero, there will likely be
cancellations. Therefore, the corrections to the eigenvalues
are going to be small, and the density of states ofA should
still have a large peak aroundl=−1.

On the other hand, the elements ofuw1
bl are all 1 inside the

b block and zero outside:

kw1
auVuw1

bl = o
k,l

w1,k
a Vklw1,l

b ; Kab, s6d

whereKab is the number of 1’s in the blockvab. At this point
we have to distinguish between random and scale-free net-
works:

Random coupling. We can assume that all the coupling
blocks vab are similar, so we writeKab=a wherea is the
average number of 1’s in each of thev blocks. The 434
matrix to be diagonalized in Eq.(4) is identical to the con-
nectivity matrix of a completely connected network of four
nodes. Therefore, the four uncoupled eigenvaluesM −1 un-
fold into one eigenvalueM −1+3a and three eigenvalues

FIG. 3. Smoothed density of states for the hierarchical network of Ravaszet al. for the original and the randomized connectivity matrix
with N=16, 64, and 256 nodes. The smoothing parameter is 5 times the average level spacing, except forN=16, where it is 2 times the
average level spacing.
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M −1−a. For random coupling we expect three main peaks
in the density of states: a large peak atl=−1, a smaller one
at M −1−a and an even smaller one atM −1+3a.

Scale-free coupling. In this case the blocks are themselves
not connected randomly, they attach preferentially to, say,
the first block. The 434 matrix to be diagonalized has the
form

1
0 a a a

a 0 b b

a b 0 b

a b b 0
2 , s7d

wherea@b. In a first approximation we neglectb and the
resulting matrix is that of a 434 star network. Therefore, the
eigenvalues becomeM −1−Î3a, M −1 (doubly degenerate)
andM −1+Î3a. Together they contribute a single symmetric
peak aroundM −1 with half widthÎ3a. Therefore, for scale-
free modular matrices we expect only two main peaks in the
density of states: a large one atl=−1 and a smaller one at
l=M −1.

Figure 3 shows the density of states for the hierarchical
network of Ravaszet al.with 16, 64, and 256 nodes. The two
peaks structure is clear and consistent with our analysis of a
modular scale-free network. The protein network shown in
Fig. 1 is certainly not completely modular. But it is also not
generically scale-free either. The two peaks at zero and −1
(in nonscaled units) suggest the existence of many starlike
structures(where the eigenvalue 0 abounds) and many fully
connected modules(where the eigenvalue −1 abounds).

Randomized connectivity matrices. A similar analysis can

made for the case of the randomized connectivity matrices.
For example, starting from a single fully connected unit
of four nodes, the eigenvalue equation can be seen to
be l4−6l2−2lsa23a24a34+a12a24a14+a12a13a23+a13a14a34d
−2sa12a13a24a34+a12a14a23a34+a14a13a24a23d+3=0. Forran-
dom aij ’s, the term multiplyingl averages to zero, whereas
the constant term in parentheses averages to either −1 or +1.
The averaged equation isl4−6l2+1=0 or l4−6l2+5=0.
The result is a spectrum with two pairs of symmetric eigen-
values. When a modular network is constructed out of these
random units, we obtain a density of states with four sym-
metric peaks. This can be seen in Fig. 3 for the network of
Ravaszet al. with 16, 64, and 256 nodes.

To summarize, we have applied linear algebra and pertur-
bation analysis to the spectral analysis of modular networks.
We have shown that the density of states contains crucial
information not only about the topology of the network but
also about its response to external perturbations. By compar-
ing rsld for a random, a scale-free and the hierarchical net-
work of Ravaszet al., we have shown that it exhibits clear
fingerprints of the networks they represent. More impor-
tantly, we have shown that neither of these model networks
can describe the density of states of a real protein-protein
interaction network, showing that better network models are
necessary to understand biological systems. In particular, the
behavior ofrs0d, which indicates that the real biological net-
work has a robust homeostatic response, is not reproduced
by the hierarchical model of Ravaszet al. Our analysis also
indicates the presence of several starlike and fully connected
modules in the biological network, suggesting that these
structures might have to be incorporated explicitly in more
realistic models.
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