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Spectral analysis and the dynamic response of complex networks
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The eigenvalues and eigenvectors of the connectivity matrix of complex networks contain information about
its topology and its collective behavior. In particular, the spectral depéity of this matrix reveals important
network characteristics: random networks follow Wigner’s semicircular law whereas scale-free networks ex-
hibit a triangular distribution. In this paper we show that the spectral density of hierarchical networks follows
a very different pattern, which can be used as a fingerprint of modularity. Of particular importance is the value
p(0), related to the homeostatic response of the network: it is maximum for random and scale-free networks but
very small for hierarchical modular networks. It is also large for an actual biological protein-protein interaction
network, demonstrating that the current leading model for such networks is not adequate.
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The network concept has been gaining recognition as aharacterize modular networks is their clustering
fundamental tool in both biological and social sciencescoefficient—the degree to which neighbors of a node are
where the theory of complex systems finds fertile groundconnected to each other—which is larger than that of generic
Biological examples include food webs in ecolody, ner-  scale-free models.
vous system$2], cellular metabolisnj3], protein conforma- In this work we investigate the spectral properties of
tion [4], and a protein-protein interaction netwdf. Social ~ modular networks. We show that the density of states of the
networks include scientific collaboration, citation, problemconnectivity matrix (particularly its randomized version
solving, and linguistic networkgs]. Most biological and so- Where elements are set to)tﬂr_ovides a connection between .
cial networks studied are not randomly connected; they folthe structure and the dynamic response of a network. This
low a scale-freebehavior(see[7] and references thergirin enables us to distinguish between various models and act_ual
random networks the probability that a node kasonnec- systems in a manner that may be directly relevant to _con5|d-
tions, P(K), is Poisson distributed and, therefore, every node®'ind the behavior of system response to perturbations. In
has about the same number of connections. In scale-free ndjaticular, we are able to distinguish clearly between ran-

works P( follows & power law, a property that can be con- U SRS, 00 AN MRS DU R0
structed by sequentiapreferential attachmentof nodes, ) g : P prop
actual protein-protein interaction network.

where new nodes are more likely to connect to already L . )
. . The connectivity(or adjacency matrix A represents the
highly connected ones. The properties of such networks arg RS . . .
: . topology of the system, indicating which variables are inter-
often characterized by the presence of a few highly con-

nected nodes, theubs whereas most of the remaining nodes connected. It is defined a§; =1 if nodesi andj are con-

. . ected and zero otherwise. If we consider the network as an
have a small number of connections. The importance of such]

networks, originally couched in terms of robustness of statiénfluence network, where each link may have a strength and

o . ) o phase that is not specified, a model of the interactions be-
connectivity to failure despite sensitivity to attag®], may .
i ) . tween node#\g can be constructed from by changing each
perhaps be better characterized in terms of their respon

<& . X . o .
. : o of the entries 1 ofA into —1 with 50% probabilitykeeping
dynamics, that provides both robustnessl sensitivity [9]. A=A, since they represent the same connegtiBhe spec-

Although scale-free networks describe several statisticatl - L . ]
roperties of biological networks, they fail to take into ac- ral properties ofig contain information about the dynamics
brop g ' Y f the network. If the network is in equilibrium and a pertur-

count one important aspect: namely, the modularity exhibited . ~ .~ ; .
ation is introduced, this perturbation propagates through the
by most complex systeni40-17. The concept of modular- : ; e
nodes according t8g. In a linear approximation the state of

ity assumes that the full network of interactions can be par; : _ t
titioned into a number of subnetworks or modules. Each'€ Nodes are updated according(fo=;Ag;X. Below we

module is composed of several elements which are morétUdy the speciral properties afandAg and show that they

: re in many cases similar or otherwise can be related.
interconnected than they are connected to the rest of the net The smoothed density of states of the network is defined

work. Modular systems may be organized in a structurab
hierarchy, with multiple levels of modular decomposition. y
Molecules, organelles, cells, tissues, organs and organisms, —— 1 —

families, communities, etc., are an example of such a hierar- peN) = NE A= M), @)
chy of structures. Networks incorporating both modular hi- '

erarchy and scale-free character were recently discussed lmhere\; are the eigenvalues of the connectivity matrix and
Ravaszet al. [13] (see alsd14]). One property often used to N is the total number of nodes. Sinéeand Az are symmet-
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ric, all eigenvalues are read(x) is a smoothed delta func- tributions of +1’s and calculated the average density over
tion that tends to the real Dirac delta @s-0. Choosingeto  this ensemble. The averaged density satisfies=p(-\).

be a few units of the mean level spacing produces a smoothhe scale-free and random networks are not sensitive to sign
level density even for small networks, which is easier torandomization, since their original spectra are already sym-
visualize than the spiked density produced by the delta funanetric. The hierarchical network density of states of Ravasz

tions. Following Farkast al.[15] we define scaled variables €t al, on the other hand, changes considerably. It keeps the
p and\ by minimum atA=0, whereas all other networks have a peak

there. Also, the density has sharp peaks with high intensity at
certain values of\|, becoming very small away from the
— —— peaks. Interestingly, this type of spectrum has also been ob-
A=NMVNp(1-p), p=pVNp(l-p), (2 served in the context of percolation theory fandomthree-
dimensional networks near the percolation threshdld].
The biological network also has an interesting structure, de-

wherep:k/N Is the average number of links per node di- viating from the pure scale-free case. However, in contrast to
vided by the total number of nodes. For random networks ther)he network of Ravaset al, it has a peak ak=0

dens_ity of states can be com_puted analytically_from,rando_m The hierarchical network of Ravast al. is built from a
matrix theory and the result is the so-called Wigner's semiy .y connected network with four nodes. This unit is then
circular law. In the scaled variables it becomes simply)  epjicated 3 times and the four identical networks are con-
=\4-N?/2 if |\[<2 and zero otherwise. nected together. The network thus formed is then viewed as
Figure 1 shows the density of states for four differentthe new unit, and the replicating and connecting process is
networks. All networks havél=1024 nodes, except for the repeated13]. Although the exact repetition of this process is
protein-protein network which hadl=1297. Figure {a) artificial, one expects real modular networks to exhibit some
showsp(\) for a random network witlp=0.0057, following  type of self-similar structure. In what follows we shall show
closely Wigner’s semicircular law. Figurét) shows a scale- that networks built from such basic units have indeed a very
free network withp=0.0058, exhibiting a triangular profile characteristic spectrum, that can be used to identify its
[15,16. Figure Xc), showing the results for the hierarchical modular nature.
network of Ravaset al. [13], has a peculiar density, which Consider first a fully connected network withh nodes.
we shall discuss in more detail. Finally Figd] showsp(\)  The connectivity matrix i§Ay);;=1-4;. The eigenvalues of
for a protein-protein interaction netwof] and also has a Ay can be calculated immediately and we fing=N-1,
distinct behavior, looking more like a superposition of two A\,=\3=---=\y=-1. The first eigenvectdw;,), correspond-
independent scale-free networks. ing to the largest eigenvalue, has components, j=1. All
Figure 2 shows the density of states for the same networkthe other eigenvectors are degenerate and satjsfy;=0. It
obtained with the randomized connectivity matriégs For  is possible to choose them so as to have very few nonzero
each network we diagonalized 20 matrices with random diselements. The linear update equatigfi'=Ax' decouples
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into y*=\y! andy'=\ly?. The dominant mode is the “cen- #1, whereM is the dimension of the blocks. The connec-

ter of massy,, meaning that the network synchronizes andtivity matrix can represented in block form by
responds as a unit to the perturbation. All other modes in-
volve fewer nodes and correspond to oscillations of fixed

amplitude. The density of states for a fully connected net- Ay V1o V13 U1a

work has only two peaks: one at=-1 and the other at T

=N-1, the former beindN-1 times larger than the latter. a=| V22 Am Va3 Vaa | _ A0 4\ 3)
Next we considestar networkswhich are characterized 013 v{s Ay vz ’

by a single hub—i.e., a single central node to which all other
nodes are connected. Star networks emerge in systems in
which preferential attachment is superlinear, meaning that
the probability that a new node attaches to old nodes in-
creases faster than expected by linear preferential attachmesnthere Ay, are fully connectedVl X M matrices,A° is the

[18]. Starlike clusters are very common in biological net-unperturbedmatrix, with the four uncoupled,, blocks, and
works (see, for instance[19]) and their eigenvalues and V is a sparse perturbation, representing the weak connection
eigenvectors can also be computed exactly. In the idealizedetween nodes of different blocks.

star network the nodes connect only to the central node, The perturbation breaks the degeneracy between the
which we label 1. The connectivity matrix is given By,  blocks. The first eigenvalue becomes\y+u and the cor-
=Ay=1fori=2,3,...,N andA;=0 otherwise. The eigenval- responding eigenvectdo{)== sa,swf)+|& where the sum

ues aren;=\VN-1, \p,=\3=---=An;=0 and\y=—VN-1. over g runs over the blocks and represents the linear combi-
Starlike structures are known sources of zero eigﬂ/aluggation between the originally degenerate vectors and the last
[16]. The first eigenvectojw;) has componenta;,;=VN-1  term is the correction due to the perturbation. Writing the
andwy;=1 for i=2. The last eigenvectdw,) is given by  eigenvalue equation fdo{) and keeping only linear terms in

Wy =VN—1 andwy;=—1 for i=2. All the other degenerate the perturbatiorV leads to the condition
eigenvectors satisfw; ;=0 andEi“iij,i:O.

Now we consider a network whose connectivity matrix
has a modular organization consisting of four main blocks,
each one very similar to the others. The number 4 is chosen > Al (Wi VIWE) = 18,51 = 0. (4)
only for comparison with the model of Ravast al, but B
could be any number. We assume that the blocks are fully
connected, so that we know their eigenvectors and eigenval- For all the other eigenvectors, whose degeneracy is much
ues when they are decoupled. lef) be theith eigenvector  bigger, we write|vﬁ>:Eﬁma2’g|wﬁ1)+|§> where the sum now
of the block labeled byr. Since the blocks are all identical, runs overg andm, with n, m# 1. The eigenvalue equation
the eigenvalues are degenerat¢=M-1 and\*=-1 fori  for this case is

T T T
Uig Uzq U3g Aw
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FIG. 3. Smoothed density of states for the hierarchical network of Raateslzfor the original and the randomized connectivity matrix
with N=16, 64, and 256 nodes. The smoothing parameter is 5 times the average level spacing, eX¢efibforhere it is 2 times the

average level spacing.

> aZZRWmWW@ — U8apSaml = 0. (5 (Wi V|wg) = %: W Vgws | = Kags (6)
Am \

whereK ,; is the number of 1's in the bloak, . At this point
However, each matrix eleme(w?|V|w?) is obtained by add- we have to distinguish between random and scale-free net-
ing elements of the matri¥ with coefficients that add up to works:
zero. SinceV is sparse, we expect most of these elements to Random couplingWe can assume that all the coupling
be zero and, when they are not zero, there will likely beblocksv,s are similar, so we writd<,;=a wherea is the
cancellations. Therefore, the corrections to the eigenvaluesverage number of 1's in each of tlheblocks. The 4x 4
are going to be small, and the density of state®\athould  matrix to be diagonalized in E@4) is identical to the con-
still have a large peak around=-1. nectivity matrix of a completely connected network of four

On the other hand, the elements\of) are all 1 inside the nodes. Therefore, the four uncoupled eigenvaMesl un-

B block and zero outside: fold into one eigenvalueM -1+3a and three eigenvalues
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M-1-a. For random coupling we expect three main peaksanmade for the case of the randomized connectivity matrices.
in the density of states: a large peak\at—1, a smaller one For example, starting from a single fully connected unit
atM-1-a and an even smaller one Bt—-1+3a. of four nodes, the eigenvalue equation can be seen to
Scale-free couplingn this case the blocks are themselvesbe \*=6\2=2\(ay384834+ 815854814+ 8181 3393+ 813814334)
not connected randomly, they attach preferentially to, say; 2(81,81384834+ 8181483834+ 81481 3824823) + 3=0. Forran-
the first block. The & 4 matrix to be diagonalized has the dom g;’s, the term multiplying\ averages to zero, whereas
form the constant term in parentheses averages to either -1 or +1.
The averaged equation ¥'—6\°+1=0 or \*-6\%+5=0.

0 a a a The result is a spectrum with two pairs of symmetric eigen-
a0b b values. When a modular network is constructed out of these

’ (7) random units, we obtain a density of states with four sym-
abob metric peaks. This can be seen in Fig. 3 for the network of
abbo Ravaszet al. with 16, 64, and 256 nodes.

To summarize, we have applied linear algebra and pertur-
wherea>b. In a first approximation we neglett and the bation analysis to the spectral analysis of modular networks.
resulting matrix is that of a 4 4 star network. Therefore, the We have shown that the density of states contains crucial
eigenvalues_becomm—1—\s’§a, M -1 (doubly degeneraje information not only about the topology of the network but
andM - 1+\3a. Together they contribute a single symmetric also about its response to external perturbations. By compar-
peak aroundM —1 with half width y3a. Therefore, for scale- ing p(\) for a random, a scale-free and the hierarchical net-
free modular matrices we expect only two main peaks in thevork of Ravaszet al, we have shown that it exhibits clear
density of states: a large oneat-1 and a smaller one at fingerprints of the networks they represent. More impor-
A=M-1. tantly, we have shown that neither of these model networks

Figure 3 shows the density of states for the hierarchicatan describe the density of states of a real protein-protein
network of Ravaset al.with 16, 64, and 256 nodes. The two interaction network, showing that better network models are
peaks structure is clear and consistent with our analysis of aecessary to understand biological systems. In particular, the
modular scale-free network. The protein network shown inbehavior ofp(0), which indicates that the real biological net-
Fig. 1 is certainly not completely modular. But it is also not work has a robust homeostatic response, is not reproduced
generically scale-free either. The two peaks at zero and -by the hierarchical model of Ravast al. Our analysis also
(in nonscaled unijssuggest the existence of many starlike indicates the presence of several starlike and fully connected
structuregwhere the eigenvalue 0 aboupd@nd many fully  modules in the biological network, suggesting that these
connected module@vhere the eigenvalue -1 abounds structures might have to be incorporated explicitly in more

Randomized connectivity matricéssimilar analysis can realistic models.
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